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Background (Massive Investments in

Clouds)

Schmidt, Google
“When the
network becomes

as fast as
984 — John

Gage, Sun
Microsystems

the processor, the
computer hollows

out and spreads
“The network is across the

the computer” network.”

The University of Sydney

Berkeley

“The data center
is the computer”




Edge Computing Miliev
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Background (Edge Computing, Fog
Computing, ...)

Table : Similarities and differences between edge computing and cloud computing
Edge Computing Cloud Computing
MEC | MCC Cloudlet | FC

Ownership Telco | Third-parties, private entities and individuals | Cloud providers
Node location Edge | Edge, devices | Near edge | Near edge, edge | Network core
Context awareness | High | High Low Medium Low
Latency and jitter | Low | Low Medum | Low High
Scalability High | High Medium | High Low

* local processing power close to the source of data

* Traditional edge processing power is given to the loT device itself

* While in fog computing, computing nodes (e.g., Dockers and VMs) are placed very close the source of data.
* The ‘edge computing’ paradigm depends on programmability of loT devices to directly communicate

with each other and run user defined codes.

* Unfortunately, standard APIs that provide such functionality are not fully adopted by

current loT sensors/actuators, etc.

The University of Sydney Page 7



Background (loT)

BILLIONS OF DEVICES
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loT: the term coined in1999 by Kevin Ashton, co-founder of Auto-ID
Center at MIT. loT as enabler of a world where physical objects are
tagged and uniquely identified by RFID transponders.
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Rapid Data Generation

Internet of Things

Internet of Things (loT) connected devices installed base worldwide
from 2015 to 2025 (in billions)
Growing at an ever-increasing e
rate

By 2025 — over 70 billion g 5.4
Internet of Things devices
connected

60

40

Connected devices in billions

Big Data

20

Doubles every 2 years 0

By 2020 — 44Zettabytes or 44
'I'I‘i”ion gigqbyfes Source Additional Information:

IHS Worldwide; IHS; 2015 to 20 16
Statista 2018

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Source: https://www.statista.com/statistics/471264/iot-number-of-
A b|g beneficiary of Edge connected-devices-worldwide/

Computing is loT.
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[Optimal Application Deployment in Resource Constrained Distributed Edges,

IEEE Transactions on Mobile Computing, 2020]
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Deployments of edge computing can lead to high energy consumption




[Mobility-Aware Service Selection in Mobile Edge Computing Systems, ICWS, 2019]

More Opportunities
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[Building an Online Defect Detection System for Large-scale Photovoltaic Plants, ACM
BuildSys, 2019]
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Potential Problems

* Hard to utilize solar energy as stable source as
opposed to utility grids.

* The uncertainty of load demand leads to
difficulty in resource allocation.

* Degradation in system performance due to lack

proper resource management.

[Request Dispatching for Minimizing Service Response Time in Edge Cloud Systems,
The University of Sydney ICCCN, 2018. (InVited Paper)] Page 13



A Complex Problem

The University of Sydney
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Design a lightweight
training framework

Establish lightweight
prediction models

lll Renewable Energy
Prediction

Realise interpretable
analysis for the
prediction models

Achieve energy
disaggregation of edge
devices

Design an energy
demand estimator

Develop an online
energy management
framework

- Energy Demand
Estimation
Bl Sustainable Edge
Computing System

System Building and

Develop a dynamic

multi-objective resource
scheduler

- Performance Evaluation
of the Design

[Optimal Application Deployment in Resource Constrained Distributed Edges,
IEEE Transactions on Mobile Computing, 2020]
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Challenges of PV Power Prediction

" Lack of a cost-effective model for PV output prediction, which not only can

improve accuracy but lower the computation overhead.

= Few predictive models take temporal patterns of solar energy generation into
consideration. (A temporal pattern is defined as a segment of signals that recurs

frequently in the whole temporal signal sequence).

= Models with high accuracy mostly require high computation and storage
resources in runtime, which will fit edge computing systems with limited

resource.

=  The existing lightweight models cannot provide accurate prediction as

expected.

[Interpretable Machine Learning In Sustainable Edge Computing: A Case Study of Short-Term

Photovoltaic Power Output Prediction. ICASSP, 2020. (Invited paper)]
The University of Sydney Page 15



Current State of the Art for Solar Power
Prediction

* Classical Statistical Algorithms
.  Numerical weather prediction (NWP)

Il.  Auto-Regressive and Moving Average Model (ARMA)

* Machine Learning Algorithms
|l. Extreme learning machine (ELM)
ll. Support vector regression (SVR)

I1l. General regression neural network (GRNN)
IV. Recurrent Neural Network (RNN)

The University of Sydney Page 16



Model Training and Prediction

= Temporal Patterns Aggregation
= Weather Clustering

= Model Establishment

= Interpretability Evaluation T B e
= typel LightGBM
Temporal Feature Vectors for Prediction
oyl _.Ie_‘_”l'e - |°:‘ I°_. T If—~ A, data Model 1
Aggregation
type 2 LightGBM
) data Model 2
Feature Vectors for Clustering
[=1 -Tef=]:1] Weather type
T5-50M
for ‘\r‘la’:a" LightGBM
Weather Model n
Clustering

Framework of clustering-based prediction model

[Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence.
The University of Sydney IEEE Internet of Things Journal, 2020] Page 17



Methodology & Implementation

Meteorological Features

Field Description Pearson
correlation
Global horizontal irradi- confficicat

ghi ance for centre value 0.9767
Global horizontal 1rradi-

ghil0 ance for 10% value 0.9629
Global horizontal irradi-

ghi%0 ance for 90% value 0.9744
Direct normal wrradiance

dni for centre value 0.9275
Direct normal 1rradiance

dnil0O for 10% value 0.9077
Direct normal 1rradiance

dni90 for 90% value 0.8644
Diffuse honizontal irradi-

dhi ance 0.9314
Direct horizontal 1rradi-

ebh ance 0.6617

air_temp Air temperature 0.3350
Solar  zemith  angle.

zenith Range: 0~180 -0.8013
Solar  azimuth  angle.

azimuth Range: -180~180 -0.0092

cloud_opacity | The quantity of cloud. -0.2184

The ghi is highly influenced by the weather condition. (e.g., sunny, partially cloudy, and
cloudy)

The University of Sydney Page 18



Methodology & Implementation

Temporal Patterns Aggregation

Historical Feature Vectors

t-n t-n+1 t-2 t-1 t t+1 t+2 t+3 t+4 | Pattern Sequence for t+1
t-n tn+l | tne2 t-1 t t+1 t+2 t+3 t+4 Pattern Sequence for t+2
tn | t-n+1 | t-n+2 | L-0+3 t t+1 t+2 t+3 t+4 Pattern Sequence for t+3

N N N I

The iterative strategy for temporal pattern aggregation

Feature Vector for Clustering

[ T C:: aggregated feature vectors at time t for weather
clustering
Civ1 ={Wins1seosWiq, Wi} W,: meteorological patterns at time t

F;: aggregated feature vectors at time t for model training
and PV output prediction

I;: irradiance factors at time t, including ghi, dhi and dni
- S I M pe: actual PV power output at time t

Feature Vector for Prediction

Fiv1 ={lt—n+1 De—n+1---Je—1, Pe—1, I, Dt}

The University of Sydney Page 19



Methodology & Implementation

Temporal

Patterns Aggregation

RMSE loss

RMSE loss

The University of Sydney

75 75
B time step s time step
70
70
65
65 )
‘_g 60
w
g
60 4 = 55
50
55
45
50 40
6 7 8 9 10 11 12 5 6 7 8 9 10 11 12
time step time step
SVR GRNN
60 60
. time step m time step
55
55
50 4
o 50
45 38
w
g
40 4 Z a5
35
40
301
254 35
6 7 8 9 10 11 12 5 6 7 8 9 10 11 12
time step time step
XGBoost LightGBM

Accuracy of four prediction models with different sizes of time step
(which is non-linear)

RMSE(root mean square error)

Page 20



Methodology & Implementation

* Motivation

l. Reduces spikes and falls in the PV output curves.

ll. Builds up a clustering-based model to reduce prediction errors.
lll. Copes with the potential issue of data loss.

* Approach

l. Tree-structured Self-organizing Map (TS-SOM)

ll. Divides the data set into multiple groups and each node of the
tree is designed as a traditional SOM neural network.

lll. Enables detailed weather clustering gradually from the root to
the leaf.

IV. Fit for clustering of the hierarchical data.

The University of Sydney Page 21



Methodology & Implementation

Set threshold for the tree to
stop the TS-SOM recursion

Generated Clusters

Level 2

Enable detailed weather
clustering recursively

Level 3

Update global information
of the tree (tree attributes)
after each split

The Framework of Tree-based SOM

The University of Sydney Page 22



Methodology & Implementation

Power Output Prediction Model

 Tree-based ensemble regression
method: LightGBM

« Ensemble a set of weak learners
generated at different training time steps, A - - ‘
mostly using Classificationand oo oo T
Regression Tree (CART).

« Sums up their results as the final Leaiwisetren growth
prediction output iteratively.

» Establish a prediction model for each

weather cluster.

The University of Sydney Page 23



Methodology & Implementation

Power Output Prediction Model

Novel techniques of LightGBM
» Histogram-based split algorithm
» Gradient-based one-side sampling (GOSS)

» Exclusive feature bundling

Advantages of LightGBM

« Faster training speed and higher efficiency
 Lower memory usage

» Better accuracy

« Compatibility with Large Datasets

« Parallel learning supported

The University of Sydney Page 24



Interpretability Analysis for Prediction
Models

Definition

Interpretable machine learning is a technique used to give machine learning
models the ability to explain or to present their behaviors in understandable
terms to humans.

Background & Motivation

* Machine-learning models have demonstrated great success in learning
complex patterns and making predictions about unobserved data.

* However, complex models lack transparency behind their behaviors, which
leaves users with little understanding of how particular decisions are made
by these models.

» The concerns about the black-box nature of complex models have
hampered their further applications.

* Interpretable machine learning would be an effective tool to mitigate these
problems and it has recently received considerable attentions.

[Edge-Computing-Enabled Unmanned Module Defect Detection and Diagnosis System for

The University of Sydney  @rge@-Scale Photovoltaic Plants. IEEE Internet of Things Journal, 2020] Page 25



Interpretability Analysis for Prediction
Models

Traditional Data Science Life Cycle

= :>|:|->p¢:>ﬂ

Feature Engineering Features ML Mod Ovutpu

Raw data

Interpretation In Data science Life Cycle

Predictive Descriptive
accuracy accuracy

| Q . . | Q
Y Model Training [ Y

Problem, Data &| .
Audience

Interpretability
Analysis

a

Iterate

The University of Sydney  LR€alising Edge Analytics for Early Prediction of Readmission: A Case Study, IC2E, 2020 pqge 26
(Invited paper)]



Interpretability Analysis for Ensemble

Models

Feature importance is a simple yet effective explanatory measure to
indicate statistical contribution of each feature to the underlying model.

Traditional Feature
Atiribution Methods:

These traditional attribution
methods violate the
consistency principle of
feature attribution

Weight: Count the
number of times a
feature used to perform
the node partitions
across the forest.

J

Gain: Measure the
average training loss
reduction as the gain
when using a feature
for node partition.

J

The University of Sydney

Cover: Calculate the
average coverage of
node splits for a certain

feature.

J




Interpretability Analysis for Ensemble
Models

SHapley Additive Explanation (SHAP)

SHAP is an additive feature attribution method that explains a model’s output as a sum of

real values attributed to each input feature.

Advantages of SHAP
« SHAP averages over all possible orderings of the features, rather than just the

ordering specified by their position in the tree, which is consistent.

« SHAP contains the information of both global explanation and localized explanation for

individual prediction.

The University of Sydney Page 28



Experiments & Results Analysis

The

* Powerful Desktop
> i7-7700 (6¢/121) CPU
» 32GB DDR3 Memory
» 2T SSD

» 7200rpm Hard Disk
» Ubuntu 16.04

* Software Package

* Raspberry Cluster
» Raspberry Pi 3B

» Quad-core CPU

» 1GB RAM

» 64-bit Ubuntu Mate

» Dask Framework

Python 3.7, Scikit-learn 0.21.3 and Tensorflow 1.13.2.

University of Sydney
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Experiments & Results Analysis

» Mean Absolute Error (MAE) > Training Time Cost

N
1 -
MAE = = [5(t) - y(®)l
=1 > Prediction Time Cost
» Root Mean Squared Error (RMSE)

| N
RMSE = J % x ) (y(t) —y(t))?

t=1
» Coefficient of determination (denoted as “R2 ”)

0 SN () —5(1)) Proportion of the variance in the dependent
=1- SN (y(t) —7)? variable that is predictable from the independent
= variable.

The University of Sydney Page 30



Experiments & Results Analysis

Prediction Performance Evaluation

Algorithm MAE RMSE R“
Group 1: Non-clustering-based
SVR 42,13  56.74  0.9469
GRNN 24.02 4894  (0.9536
XGBoost 1894 4055 0971
LightGBM 2112 40.57 0.97;>
Group 2: Clustering-based
SVR 3831 5142 09418
GRNN 1982 4685 (0.9602
XGBoost ~14.60 3258  0.9825
LightGBM ~16.79 3549 0.979)
Group 3: Recurrent neural network
LSTM 25.12 4590  0.9652
GRU 2537  47.85  0.9610

Two ensemble methods (LightGBM and XGBoost) dominate on all metrics and provide better performance on
the test data set with higher accuracy and a lower error rate compared to the others. Besides, with more than
0.97 of R2, these two models indicate that they can also provide better generalization performance and fit to
diverse weather conditions.

The University of Sydney Page 31



Experiments & Results Analysis

Prediction Performance Evaluation

45 60
B Non-clustering-based mmm Non-clustering-based

Bm Clustering-based

B Clustering-based

MAE

SVR GRNN XGBoost LightBoost SVR GRNN XGBoost LightBoost
Methods Methods

MAE Evaluation RMSE Evaluation

The University of Sydney Page 32



Experiments & Results Analysis
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Experiments & Results Analysis

Cost on Powerful Desktop

Cost on Raspberry Pi Cluster

Algorithm Training(s)  Execution(s) Algorithm  Training time(s)  Execution time(s)
Group 1: Non-clustering-based SVR 3.90 0.15
SVR 0.4343 0.013 GRNN 282 0.407
XGoos O N XCBoost 1653 0053
LightGBM 0.0540 0.00029 (s _1ENGBM 1.39 0.020
Group 2: Clustering-based
SVR 0.3130 0.0093
GRNN 0.1960 0.1016
XGBoost 1.0033 0.0067
LightGBM 0.1669 0.0022 {m——
Group 3: Recurrent neural network
LSTM 299.26 20.52
GRU 219.56 21.22

The University of Sydney
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Experiments & Results Analysis

Interpretability Evaluation

High
The feature importance of "ghi” is ghi
the highest, which means it makes ghil0
the most con’rrlb.u’rlon to the ghi9o
prediction.
azimuth
ebh v
3
. dni90 ]
g
It is noteworthy that "ghi” makes dnil0 T %
the most impacts on most zenith w
predictions. dhi
cloud_opacity
~ air_temp
SHAP indeed guarantees the dni
: A . . ‘ Lo
consistency in prediction model e oo o1 03 03 oa o
by comparing results of Gain SHAP value (impact on model output)

and Weight.

The ghi is highly influenced by the weather condition. (e.g., sunny, partially cloudy, and
cloudy)

The University of Sydney Page 35



Experiments & Results Analysis

Interpretability Evaluation

Feature importance Feature importance

ghi : : ghi

azimuth ghil0

dhi : 1 ebh

ghi90 : 1 1 ghi9Q =

07O ()~ S | t + dni9d
g . ¢

4 dnil0 dhi
3 ' 3

P ghi10 3 azimuth
w w

zenith 1 t 1 1 zenith

ebh 1 t t t dnil0

cloud_opacity 1 1 1 1 cloud_opacity

dni T T 1 1 1 dni

alr_temp -l—’— t t t t t air_temp

0 100 200 300 400 500 600 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Score Score
Results of Gain Results of Weight
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Summary

Our proposed clustering-based
model surely provides high-level
performance on tackling the
problem of solar power
prediction and lowers the
resource overhead when
compared to other widely used

regression algorithms.

The feature "ghi” makes the most
contribution on PV output
prediction, and the characteristics
of solar power generation are
also reflected in the orderings of
feature importance.

)

[A Lightweight Short-term Photovoltaic Power Prediction for Edge Computing, IEEE Trans on
Green Communications and Networking, 2020]
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Future Work

Enhance generalization ability of the proposed PV
output prediction

Overcome multiple challenges related to resource

management on edge devices

Develop a dynamic multi-objective resource
scheduler

The University of Sydney Page 38



Finally....

— Edge Computing is a rapidly evolving technology with many
opportunities, and many more challenges.

— Performance predictability is a major concern in current Edge
systems where heterogeneous resources are to be allocated.

— Realistic performance metrics are needed at the application
level to collectively and truly represent performance variances
occurring across all system-level components.

— New optimisation models that integrate a variety of resources
with strict real-time /capability constraints.

— Trade-off frontiers between an Edge system performance and
associated costs. This is necessary to inform resource allocation
across a platform as well as well to cap expenditure.

[Federated Learning over Wireless Networks: Convergence Analysis and Resource
Allocation, IEEE/ACM Transactions on Networking, 2021]

The University of Sydney Page 39



Things in the Pipeline

— Online machine learning for real-time energy disaggregation for electricity distribution feeders

— Low latency smart meter (computation and communication) — implemented and tailored to
end users

— Residential demand response/thermal loss minimization studies in Eco capsules
— Smart water systems management
— Mobile blockchain + edge computing on e-health applications

— Multiple data sources (visible/infrared/electric sensing) integration/analytic for the pitfalls
detection of PV panels
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